

Securing IoT Devices: How Safe Is Your Wi-Fi Router?

To date, many low-cost Internet-of-Things (IoT) devices lack adequate security provisions. As a result, U.S. households have a cluster of networked, electronic devices that offer vulnerable targets to hackers, such as digital cameras embedded in baby monitors, storage and computing devices, and sensors implanted in appliances. This ConsumerGram analyzes Wi-Fi routers and finds that 5 of every 6 routers are inadequately updated for known security flaws, leaving connected devices open to cyberattacks that can compromise consumer privacy and lead to financial loss.

A Vulnerable Source for Cyberattacks

The security of the software in the digital devices we use has a bearing on our privacy. For many of us, electronic devices like laptops and smartphones contain the record of our interactions with others, passwords, financial information, social media conversations, and other sensitive information. At a societal level, electronic devices and software are at the center of many of our day-to-day activities – employment, health records, entertainment and shopping – just to name a few. In addition, the security of digital computing and communications is essential to the operations of commerce, as well as our country's infrastructure and national security.

In May 2018, the FBI sent out a warning that Russian computer hackers had compromised hundreds of thousands of home and office routers and could collect user information or shut down network traffic.¹ They urged the owners of many brands of routers to turn them off and on again, and then download firmware updates from the manufacturers to

¹ Joseph Menn and Sarah N. Lynch, "FBI Warns Russians Hacked Hundreds of Thousands of Routers," *Reuters*, May 25, 2018, <u>https://ca.news.yahoo.com/fbi-says-foreign-hackers-compromised-home-router-devices-155414530.html.</u>

protect themselves. Earlier, Cisco warned that hackers were targeting popular routers made by Linksys, NETGEAR, TP-Link, and others.²

Hackers target hardware devices such as routers because they are usually left on and their accompanying software, called *firmware*, are infrequently updated.³ Firmware is more and more frequently built on open source code, which is, as many believe, to be more prone to hacking.⁴ The use of open source code as a cost-effective way to allow customization has grown across all industries in recent years. Open source is now everywhere, including operating systems, applications software, development tools, and routers. As vulnerabilities are found in open source code, the numerous router manufacturers may or may not take the necessary steps to patch these vulnerabilities when fixes become available.

Testing for Known Open Source Vulnerabilities: Methodology

This ConsumerGram seeks to explore the degree to which Wi-Fi routers are potentially being left unpatched for known risks, making the routers themselves and the devices to which they are connected more susceptible to cybercrime and other online threats. Specifically, this analysis examines to what extent router manufacturers are providing secure products to consumers.

Failing to address known security flaws leaves consumer devices vulnerable to having their data compromised, leading to malicious activity, identity theft, fraud and espionage. The results presented here are based on a sample of 186 Wi-Fi routers from 14 different manufacturers that are or were available in the U.S. market and the firmware is currently available on the manufacturer's website (see the Appendix for the complete list of the routers included in the sample).

² Ibid.

³ James Sanders, "Why router-based attacks could be the next big trend in cybersecurity," *TechRepublic*, April 17, 2018, <u>https://www.techrepublic.com/article/why-router-based-attacks-could-be-the-next-big-trend-in-cybersecurity/</u>.

⁴ Robert Lemos, "Open-Source Could Mean an Open Door for Hackers," *Technology Review*, June 8, 2010, <u>https://www.technologyreview.com/s/419257/open-source-could-mean-an-open-door-for-hackers/</u>.

To test for the specific risks associated with the open source components used in the sampled routers, Insignary's Clarity program was used to scan embedded firmware for unpatched security vulnerabilities.⁵

Firmware: The Culprit for Security

Firmware is software that controls the basic functions of hardware devices, and it is at the heart of IoT and other connected devices. Even passwords are embedded in the firmware of IoT devices. As such, protecting firmware is the key to reducing cyber risks.

Fixing vulnerabilities lies partly in the hands of consumers who must do their homework and install firmware (software) updates. Although some hardware makers try to insulate users from update burdens by providing automatic updates, the average consumer has probably never considered taking the initiative to update their router's firmware. Because consumers rarely think about installing updates on their devices or are not even aware of potential security vulnerabilities, they tend not to consider firmware support.

In addition, manufacturers often do not provide user-friendly ways for consumers to update firmware or may even view building security protocols into their devices as an unnecessary expense. Sometimes accessing firmware updates requires consumers to have registered their products with the manufacturers, while other times these updates are not readily available online, and still other times somewhat older routers are not supported at all. This means that even consumers who try to update their router firmware might download outdated code that is all but useless against critical vulnerabilities discovered since its sale. Simply calling on consumers to turn their routers on and off is insufficient.

With the sharp rise in open source usage and the increasing number of vulnerabilities plaguing open source software, automated updates are by far the most feasible option to keep

⁵ The appropriate firmware was downloaded the week July 9, 2018, and the scans were performed the following week in order to minimize the probability of not testing the most updated firmware. For more information about Clarity, see <u>www.insignary.com</u>.

IoT devices and consumer data safe. However, in most cases, those automated updates do not appear to be happening. Unlike many consumers who may have outdated firmware on their older routers, this ConsumerGram scans the latest available manufacturer's firmware for known vulnerabilities.

Firmware Scans: The Results

Based on Insignary's Clarity scanning tool, our analysis shows that of the 186 sampled routers, 155 (83%) were found to have vulnerabilities to potential cyberattacks (see Figure 1) in the router firmware, with an average of 172 vulnerabilities per router, or 186 vulnerabilities per router for the identified 155 routers.⁶ In total, there was a staggering number of 32,003 known vulnerabilities found in the sample.⁷

Figure 1: Percentage of Routers with Open Source and Known Vulnerabilities

⁶ We used MITRE Corporation's definition of vulnerabilities, "mistakes in open source software" that are recorded in a public database maintained by the MITRE Corporation (cve.mitre.org). Each vulnerability is identified with a unique CVE (Common Vulnerability and Exposure) identifier that contains information about a specific vulnerability's capacities and risks.

⁷ Some routers were found to contain the same CVE under different components, suggesting that the potential risk is far higher than presented here.

The severity of each vulnerability is ranked by the National Vulnerability Database.⁸ Based on the different scores, each vulnerability is ranked either "low," "medium," "high," or "critical" to reflect the severity of the potential risks associated with the vulnerability. High and critical vulnerabilities are more easily exploited, and it could cause more damage than low and medium vulnerabilities. High-risk vulnerabilities require very little knowledge or skill to exploit, but, unlike critical-risk vulnerabilities, they will not entirely compromise the system. The potential damage remains a concern, as exploited high-risk vulnerabilities can partially damage the system and cause information disclosure.

Within the sample, 28% of the vulnerabilities were considered high-risk and critical (see Figure 2). Our analysis shows that, on average, routers contained 12 critical vulnerabilities and 36 high-risk vulnerabilities, across the entire sample. The most common vulnerabilities were medium-risk, with an average of 103 vulnerabilities per router.

Figure 2: Distribution of Vulnerabilities Based on Security Risk Severity

⁸ For further information, see the National Vulnerability Database website at <u>https://nvd.nist.gov/vuln-metrics/cvss</u>.

Wi-Fi Routers Security Exposures: Implications for IoT Devices

Internet-connected devices are now nearly ubiquitous in the United States and routers are a central point for connecting these IoT devices. These devices represent a growing constellation of tools, devices and appliances designed to collect, exchange and process information over the internet to provide access to an array of services and information.⁹ They include security cameras, DVRs, printers, cars, baby monitors, data storage devices, refrigerators — even lightbulbs — and they have transformed how people, households and businesses interact with each other.

The security we want for our devices and software is rather simple. We want these electronic devices to be free from intrusion, and we want the data to be secure, not corruptible and certainly not distributable without the owner's authorization. Yet, our results show that these devices are highly vulnerable, and are becoming an increasingly attractive target for cyberattacks.

Symantec's annual Internet Security Threat Report found a 600% increase in IoT attacks in 2017. Routers were the most frequently exploited type of device, making up 33.6% of IoT attacks.¹⁰ An IoT cyberattack can cause massive damage to the connected devices and harm to their owners. For instance, exploiting an Internet Protocol security camera gives an attacker not only access to the entire network the camera is connected to, it also gives them a direct video feed inside the property.¹¹

⁹ "Securing Your 'Internet of Things' Devices," U.S. Department of Justice (Computer Crime & Intellectual Property Section Criminal Division) and the Consumer Technology Association, July 2017, <u>https://www.justice.gov/criminal-ccips/page/file/984001/download</u>.

¹⁰ "Internet Security Threat Report," Symantec, Volume 23, April 2018, <u>https://www.symantec.com/security-center/threat-report</u>.

¹¹ Lily Hay Newman, "An Elaborate Hack Shows How Much Damage IoT Bugs Can Do," *Wired*, April 16, 2018, <u>https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/.</u>

The 2017 Annual Cybercrime Report published by Cybersecurity Ventures predicts IoT devices to become the major technology crime driver in 2018, and that cybercrime damages will cost the world economy \$6 trillion annually by 2021.¹²

Summary

The FBI's warning that Russian computer hackers had compromised hundreds of thousands of home and office routers highlighted the potential danger of open source routers, but the warning may have gone largely unnoticed by most consumers. In addition, as this ConsumerGram shows, Wi-Fi router manufacturers are neglecting to update their firmware for known vulnerabilities, and the problem is likely more pervasive for other IoT devices. When these security lapses occur, firmware can be fairly easily exploited by hackers with nefarious intentions.

The results of this study suggest that the most popular Wi-Fi routers in peoples' homes are inadequately updated for security, leaving IoT devices open to attacks with potentially disastrous results. Simply resetting your router is not enough. Keeping firmware patched for known online threats may be an expense for manufacturers, but not doing so leaves consumers to collectively bear the burden of potentially much higher costs from cybercrime.

Each of the 32,003 vulnerabilities identified in this report put consumers, our infrastructure, and our economy at risk. If this growing threat is to be countered effectively, manufacturers must commit more resources to identify and mitigate open source vulnerabilities on their devices and consumers must remain vigilant for potential threats that could compromise their personal data. With the IoT market expanding quickly for both residential and industrial applications, the need to secure firmware cannot be overstated.

¹² "2017 Cybercrime Report," Cybersecurity Ventures, October 16, 2017, <u>https://lc7fab3im83f5gqiow2qqs2k-wpengine.netdna-ssl.com/2015-wp/wp-content/uploads/2017/10/2017-Cybercrime-Report.pdf</u>.

Appendix

List of routers included in the sample:

<u>TP-Link</u>	<u>ASUS</u>	<u>AVM</u>
TL-WR94N V3	RT_N66R	FRITZBOX_6890
TL-WR94N V6	RT_N600	FRITZBOX_7590
TL-WR845	RT_N16	FRITZBOX_7490
TL-WR843	RT_N56	
TL-WR843ND	RT_N12D1	Belkin
TL-WR843ND	RT_ACRH13	Denni
TL-WR841N	RT_AC5300	F9K1124
TL-WR840N	RT_AC3200	F9K1119
TL-WR802N	RT_AC1900	F9K1123
TL-WR743ND	RT_AC3100	F9K1116
TL-WR741ND	RT_AC1750	F9K1118V2
TL-WR740N	RT_AC1200G	F9K1115
TL-WR710N	RT_AC88U	F9K1102
TL-WR702N	RT_AC1200	F9K1113
TL-WR1042ND	RT_AC87U	F9K1105
TL-WDR4300	RT_AC86U	F9K1103
TL-WDR3600	RT_AC68U	F9K1009
TL-WDR3500	RT_AC68P	F9K1010
ARCHER_C8	RT_AC66U_B1	F9K1002
ARCHER_C7	RT_AC66R	<u>Cerio</u>
ARCHER_C5	RT_AC66U	WP-300N
ARCHER_C50	RT_AC56U	WMR-200N
ARCHER_C3200	RT_AC56R	IW-100
ARCHER_C2	RT_AC55U	WM-200N
ARCHER_C20i	RT_AC51U	DT-300N_0S30
ARCHER_C20	RT_GT_AC5300	DT-100G-N
	RT_MAP_AC2200	DT-300N
	BLUECAVE	CW-400NAC_A2
		CW-400NAC_A1

<u>D-Link</u>	EA4500V3	R6200
DIR-878 REVA	EA3500	R6120
DIR-882 REVA	EA2750	R6100
DIR-867 REVA	EA2700	R6080
DIR-859 REVA	E8400	R6020
DIR-842 REVERSIONB	E2500	PR2000
DIR-842 REVERSIONC	E1700	N300
COVB-3902	E1200	JR6150
DIR-822-REVERSION2	E900	AC1450
DIR-6051 VERSIONB		JNR3210
DIR-605L_VERSIONA	<u>NETGEAR</u>	
	WNR3500L	Sierra Wireless
<u>HPE</u>	WNR2200	MP70
	WNR2500	RV50
	WNR1000V3	LX60
WI3R934	WNR2000V3	GX450
	WNDR4700	ES450
<u>Linksys</u>	WNDR4500	
WRT1900AC V2	WNDR3700	TRFNDnet
WRT3200ACM	WNDR3400	<u></u>
WRT1900ACSV2	R8900	TEW-829DRU
WRT1200ACV2	R9000	TEW-812DRU
WRT54GL	R8300	TEW-721BRM
WRT32X	R8500	TW-100
EA9300	R8000P	TEW-827DRU
EA9500V2	R8000	TEW-818DRU
EA9200	R7900P	tew-817dtr
EA8300	R7900	TEW-816DRM
EA8500	R7800	TEW-731BR
EA7500V2	R7300	TEW-714TRU
EA7300	R7500	TEM-022BK3G
EA6900	R7000	
EA6500V2	R700P	<u>Ubiquiti Networks</u>
EA6400	R6900	UGW3
EA6350V3	R6700	XG 8U GWXG
EA6300	R6900P	PRO4 UGW4
EA6200	R6400	_ · ·
EA6100	R6250	
EA5800	R6220	

<u>Yamaha</u>

RT810 FWX120 Zyxel

NBG6815 NBG6617 NBG6515 ARMOR_Z2_NBG6817 NBG-418N ARMOR_Z1_NBG6816